On independent domination in planar, cubic graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Independent Domination in Cubic Graphs

A set S of vertices in a graph G is an independent dominating set of G if S is an independent set and every vertex not in S is adjacent to a vertex in S. The independent domination number of G, denoted by i(G), is the minimum cardinality of an independent dominating set. In this paper, we show that if G �= C5 ✷K2 is a connected cubic graph of order n that does not have a subgraph isomorphic to ...

متن کامل

Independent domination in directed graphs

In this paper we initialize the study of independent domination in directed graphs. We show that an independent dominating set of an orientation of a graph is also an independent dominating set of the underlying graph, but that the converse is not true in general. We then prove existence and uniqueness theorems for several classes of digraphs including orientations of complete graphs, paths, tr...

متن کامل

Total domination in cubic Knodel graphs

A subset D of vertices of a graph G is a dominating set if for each u ∈ V (G) \ D, u is adjacent to somevertex v ∈ D. The domination number, γ(G) ofG, is the minimum cardinality of a dominating set of G. A setD ⊆ V (G) is a total dominating set if for eachu ∈ V (G), u is adjacent to some vertex v ∈ D. Thetotal domination number, γt (G) of G, is theminimum cardinality of a total dominating set o...

متن کامل

On Domination in Cubic Graphs

Let v(G) and γ(G) denote the number of vertices and the domination number of a graph G, respectively, and let ρ(G) = γ(G)/v(G). In 1996 B. Reed conjectured that if G is a cubic graph, then γ(G) ≤ dv(G)/3e. In 2005 A. Kostochka and B. Stodolsky disproved this conjecture for cubic graphs of connectivity one and maintained that the conjecture may still be true for cubic 2-connected graphs. Their m...

متن کامل

On Domination in 2-Connected Cubic Graphs

In 1996, Reed proved that the domination number, γ(G), of every n-vertex graph G with minimum degree at least 3 is at most 3n/8 and conjectured that γ(H) ≤ dn/3e for every connected 3-regular (cubic) n-vertex graph H. In [1] this conjecture was disproved by presenting a connected cubic graph G on 60 vertices with γ(G) = 21 and a sequence {Gk} ∞ k=1 of connected cubic graphs with limk→∞ γ(Gk) |V...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discussiones Mathematicae Graph Theory

سال: 2019

ISSN: 1234-3099,2083-5892

DOI: 10.7151/dmgt.2105